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Understanding Factors Contributing to Retention in Engineering: 

A Structural Equation Modeling (SEM) Approach 

Introduction 

Retention of early engineering students is a nation-wide concern that will affect the strength of 

the future engineering workforce and, hence, the role of the United States as a dominant world 

player in engineering and technology
1
. Michigan State University (MSU) and Lansing 

Community College (LCC) were recently awarded a five-year NSF STEP grant (STEM Talent 

Expansion Program) to increase retention by 10% over current levels at our large, research-

intensive institution.  The project is titled Engaging Early Engineering Students to Expand 

Numbers of Degree Recipients (EEES).  

The major research challenge in this project is to understand the interactions among the various 

components of the project.   Our engineering curricula are not lock-step, so students may elect to 

participate in various programs and the interactions among the interventions may vary by student 

and the choices they make.  These challenges make traditional statistical techniques difficult to 

use. 

Structural Equation Modeling (SEM) is a multivariate procedure that supports hypothesis-testing 

of causal models in observational studies without the need for random assignment of participants 

to treatment and control groups.  This paper outlines our project, introduces SEM and the models 

we are evaluating and discusses the data collection, management and analysis we are 

implementing to track the various components of the project.  The methods are appropriate for 

other in situ studies of educational interventions. 

Overview of EEES 

EEES targets two groups of students who are at-risk for leaving engineering: 1) students who are 

academically capable of completing an engineering degree but perceive the education 

environment of early engineering as being unsupportive and not engaging 
2-4

; and 2) students 

who struggle with core prerequisite courses, mainly calculus and physics. Analysis of our past 

student retention patterns show that grades in these core courses are the best predictors of future 

admission to Engineering in the junior year. The goal of the EEES project will be achieved 

through the synergistic deployment of four components designed to involve engineering faculty 

in rethinking the structure of the introductory courses.   

EEES has four components as shown in Figure 1.  They are: 1) Connector faculty; 2) Peer 

Assisted Learning (PAL); 3) Course cross linkages; and (4) Diagnostic (DX) Driven Early 

Intervention. Details of these components of the EEES project are available in other papers
5, 6

. 

EEES targets students in four key technical courses taken by early engineering students to 

prepare them for upper level disciplinary courses: pre-calculus algebra and trigonometry (MTH 

116), calculus 1 (MTH 132), physics 1 (PHY 183) and computation-based problem solving 

(EGR 102).  The four EEES components are shown in the bubbles in Figure 1. The dark boxes 

show groups of faculty or students who are part of the implementation of EEES. The dark bubble 

shows the target group: early engineering students. 



Since the mathematics and physics courses are outside of the College of Engineering, the EGR 

102 course is the primary locale for engaging engineering faculty in 1) changing the curriculum; 

2) incorporating more active-learning, team-based projects, and integrating mathematics and 

physics into the curriculum; and 3) fostering a sense of engineering community among faculty 

and students. 

 

 

Figure 1: EEES Schematic Diagram. 

To support students who are struggling with the crucial calculus courses, we implemented two 

interventions.  The first is a series of online diagnostic (DX) tests that provide formative 

feedback to students about the areas in which they need to focus their studying.  By providing 

early and frequent opportunities for students to check their progress, the DX program allows 

students to seek additional help with these courses.  To provide that assistance, we implemented 

a program of Supplemental Instruction 
7, 8

, which we have called Peer Assisted Learning.  The 

goal of this program is to provide undergraduate peer-led study sessions that target difficult 

courses, not at-risk students.   



In addition to addressing academic issues, some of the interventions we designed for EEES are 

based on literature that shows that many students leave STEM disciplines not because they are 

academically incapable, but because they find the academic environment in these disciplines 

unsupportive and have serious reservations about future careers in STEM disciplines 
2-4

. To 

address these needs, we created a Connector Faculty program that pairs incoming first year 

engineering students with engineering faculty
5
. The goal of this program is to create a 

welcoming atmosphere for students where they can feel connected to the community of faculty 

and upper division students in the college.   

Research Questions 

Our research questions include: 

1. What are the changes in retention as a result of EEES?  

2. What are the impacts of each of the components of EEES on retention?  That is, what 

proportion of the variance is accounted for by each component? 

3. Which groups of students are impacted by which components of EEES?  Do different 

EEES components have different impact on students who are not struggling academically 

but might leave due to the climate in the College of Engineering compared with students 

who are struggling academically? Do different components have different impact on 

women and underrepresented groups? 

4. What are the interactions among the EEES components for different groups of students?  

That is, does participating in multiple components have an additive, multiplicative, or 

negative interaction?  Does this differ by types of students?   

Answers to these questions will be crucial to the formative evaluation of EEES, for continuous 

quality improvement on the program, and to provide a basis for helping students decide what 

components of EEES to draw upon. 

Research Challenges 

The major research challenge in this project is to understand the interactions among the different 

types of at-risk students, different interventions, and final outcomes over the course of the 

project.   Since the project is being implemented college-wide, it is not feasible to compare 

contemporaneous students who are and are not participating in the interventions.  Furthermore, 

students may elect to participate in various parts of the program (or not) and the interactions 

among the interventions may vary by student and the choices they make.  These challenges make 

traditional statistical techniques difficult to use. 

In traditional statistical analysis, when we want to predict future successful admission to 

engineering based on the grades in calculus and physics, we could create a regression equation.  

For example, we would define Y as a binary dependent variable (admit/no admit), and Xi as the 

independent variables of grades in the i-th calculus and physics courses of interest.  Each of the 

independent variables has a weight, βi, that is calculated to reduce the overall error, ε, of the 

equation.  The resulting regression equation would be:  

Y = β1X1 + β2X2 + … + βiXi + ε 



In regression, the assumption is that the individual measurement errors are randomly distributed 

and that all of the variance which is unaccounted for is subsumed in a single error term, ε. 

However, while this equation captures the observed variables (Xi), we have little information that 

allows us to understand what factors influenced these variables.  Furthermore, regression and 

other multivariate techniques assume that the independent variables are in fact, independent.  

That is, the values of X1 and X2 should not be correlated.  Yet, we know from previous studies 

that students who do well in one course tend to do well in other courses.  At our university, 

overall GPA correlates with grades in individual courses at about r = .6 or more, depending on 

the course.   

As noted above, when we analyzed the grades of students who were previously accepted or 

declined admission to engineering, we found that grades in calculus courses (followed closely by 

physics) had the strongest correlation with admission to engineering and final GPA at 

graduation.  The grades in these courses are the observed variables, which we infer are 

measuring some latent variable such as mathematical knowledge.  It is the underlying latent 

variable that is of interest but we have only the proxy variable of a grade in a course that has 

been measured.  As we plan an intervention, we must be careful not to focus only on the 

observed variable (course grade) but to intervene in a manner that will affect the latent variable 

(mathematical knowledge) which, in turn, should result in a higher course grade.  If we simply 

focus on improving the course grade, then it is possible that we will help students improve their 

grades in the target courses, only to face a subsequent hurdle in later courses because they do not 

have the necessary mathematical knowledge.   

Structural Equation Modeling 

Structural Equation Modeling (SEM) is a multivariate procedure that supports hypothesis-testing 

of causal models in observational studies without the need for random assignment of participants 

to treatment and control groups
9
.  By focusing on covariance structures and including explicit 

error terms in the models, rather than trying to minimize residuals as in traditional multivariate 

techniques
10

, it is possible to estimate latent variables (e.g., engagement, persistence, academic 

ability) that are theorized to be the “causes” of observed variables (e.g., grades, retention). 

Generally SEM is used for hypothesis testing to see how well a hypothesized model fits the data, 

rather than for exploratory model building.  However, it is possible to compare different models 

as a data exploration technique. SEM is a relatively recent technique (Bollen
10

 provides historical 

background) that gained wider acceptance with the creation of the LISREL software to support 

the calculations needed.  SEM does not appear to have been used very much in Engineering 

Education research.  A search of ASEE conference proceedings for the terms “structural equation 

modeling” and “SEM” did not turn up any papers since 1996.  Vogt
11

 recently used SEM to 

model the impact of faculty interactions with students on retention in engineering.   

SEM includes other techniques such as path analysis and factor analysis and usually represents 

the models by a path diagram rather than in the form of equations.  SEM path diagrams show the 

relationships among the variables and can be used to represent standard regression models.  

Figure 2 shows the path representation of the previous regression equation that we created using 

AMOS
12

, software that supports SEM analysis. 



In Figure 2, each of the observed independent variables – grades in the various courses – is 

shown by a box on the left side of the figure.  The dependent variable, admit, is show by the box 

in the middle of the diagram.  The proportional variances (r-square) for each of the independent 

variables are shown by the straight arrows labeled r2.  The error term is shown by the circle 

because it is a latent variable.  In other words, we presume that there is error, but we do not 

explicitly identify or measure it – it is simply everything not measured by the observed variables 

plus any measurement error. The straight arrows represent that the independent variables plus the 

error term account for the variance of the dependent variable.  The curved arrows represent the 

interactions, or covariance, among the independent variables. 
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Figure 2: Path representation of regression equation 

To analyze data with AMOS, the user specifies a model graphically as shown above, then 

attaches variables from a dataset to the boxes.  The software then solves the model and calculates 

the beta weights for the independent variables in a traditional least-squares manner.   

So far, using SEM in this manner does not provide any particular advantage over traditional 

statistical techniques.  However, the advantage of SEM emerges when we want to analyze more 

complex situations that are not easily modeled as a single linear equation among observed 

variables.  Building on the previous example, when we use regression to model the admission 

decision, all of the error is collapsed into a single error term.  Often, the predictor variables (i.e., 

the grades in the courses) can account for the majority of the variance, but the parts of the 

unaccounted-for variance are all collapsed into the single error term.  In practice, there are likely 

differing amounts of error associated with the different variables.  In addition, the grades in the 

individual courses are inter-related (r ≈ .6), which can cause some prediction instabilities in the 

model.  One reason for this inter-relationship among the course grades is that the observed 

variables (grades) are a manifestation of latent (unobservable) variables such as academic ability 

or motivation. Using SEM, we can re-specify a hypothetical model as shown in Figure 3. 

The model shown in Figure 3 is a modification of previous model shown in Figure 2. Here, the 

interaction terms among the observed variables have been removed and two latent variables are 



added: academic ability and motivation.  We cannot directly measure these variables, but they 

are hypothesized to be the causal variables behind the observed variables of grades in each of the 

courses.  These latent traits are assumed to be characteristics of each individual student that 

affect student outcomes in the course.  Academic ability and motivation are shown as co-varying 

by the double-headed arrow because they are hypothesized to influence each other.  That is, 

students who are motivated, tend to work harder and perform better.  But students who perform 

better receive positive feedback which in turns motivates them.  Academic ability and motivation 

are both shown as affecting course grades, but each one has separate arrow because the weights 

of these are computed independently.  It may be that motivation has differing influence on 

performance in different courses, so these are allowed to vary independently.  By acknowledging 

that measurement is error-prone and including measurement errors for each of the observed 

variables, SEM makes it possible to provide unbiased estimates for the latent variables (academic 

ability and motivation.)    
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Figure 3: Re-specified model using latent variables 

In addition to including the latent variables, SEM also allows the specification of error terms on 

each observed variable, rather than a single error term for the entire model.  This facilitates 

modeling the affect of the latent variables by partitioning the error across the different 

independent variables by minimizing each error term in order to calculate the optimal weights for 

each of the paths in the model.   

 

 



A SEM Model for EEES 

We are in the first year of the EEES project and are beginning to implement the various 

components of the project: Connector Faculty, Peer Assisted Learning, DX Intervention, and 

Cross-Course Linkages.  These changes are occurring within the larger setting of ongoing 

programs throughout the college of engineering.  However, all new incoming students are 

participating in these programs.  Therefore, we cannot compare students (or cohorts of students) 

who are participating in the various components of EEES to understand how the individual 

components work.  Furthermore, EEES was designed to be a series of interconnected 

components, so it is unreasonable to try to examine any individual component alone. Yet, we 

will want to understand the components individually to see what works and to make 

improvements to the individual components.  We believe that SEM has the potential to help us 

understand the contributions of each component plus the interactions among the components.  

To address these research needs, we have begun to collect a large amount of data on students and 

faculty in the College of Engineering.  These data include student demographic data (class 

standing, gender, ethnicity, ACT scores); assignment, exam and course grades in the core pre-

engineering courses; course grades in other courses; math diagnostic exam scores; number of 

PAL sessions attended; number of meetings with Connector Faculty, surveys/interviews on 

student perceptions of the various components of the EEES program; surveys/interviews on 

student engagement and desire to persist in engineering.  We are tracking students from their first 

year in the program through one of three outcomes: 1) students who graduate with an 

engineering degree; 2) students who are academically qualified for engineering but elect to leave 

for other majors; and 3) students who apply but are not admitted to engineering due to 

insufficient GPA.  Our goal is to understand what, if any, affect the EEES program has on these 

three types of students and how different students respond to the various components.  

Our hypothesized model is shown in Figure 4.  Recall that the observed variables are shown in 

boxes.  These are the variables we can measure and include our outcome variables (degree 

completion/leaving/no admit), other observable variables (demographics, grades, test results, 

number of PAL sessions and CF meetings attended) and indirect measures of engagement and 

persistence (surveys and interviews.)  Each observed variable has measurement error shown by 

the black circle with an arrow pointing to it. 

Persistence is necessary if a student is going to succeed in any academic discipline, but 

particularly in one as demanding as engineering 
13-16

.  The ability to learn from mistakes and 

change tactics is crucial but requires ongoing support.  We anticipate that the support of the peer 

mentors in the PAL program and interactions with the Connector Faculty will help motivate 

students to persist in the face of these challenges and help them acquire the skills needed to 

become successful engineers. 

Engagement is crucial to support students’ intrinsic motivation, which, in turn, is crucial to 

learning 
13, 17, 18

.  While the challenge of problem-solving can be engaging for engineers, 

supporting new students and helping engage them requires more than the far-off goal of 

engineering work after graduation.  It is important to help new students feel welcomed as part of 

the community of engineers and scaffold their engagement as part of that community 
19

.  Both 

the Connector Faculty and PAL components of EEES are designed to do that. 
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Figure 4: Hypothesized Model for EEES  

Academic ability, persistence and engagement are not independent of each other.  All three 

interact, with persistence stimulating engagement and improving academic ability, academic 

ability producing better grades which helps engagement, and persistence and engagement 

motivating persistence and improving academic ability. These interactions are shown by the 



double-headed arrows among these variables. While we have the established measures of 

academic ability available to us in the form out grade outcome variables, persistence and 

engagement are much more elusive.  The model imputes the values indirectly from outcome 

variables and from surveys and interviews designed to understand students’ persistence and 

engagement and the affect of the EEES interventions.  

Anticipated Outcomes 

SEM can test hypothesized causal models to determine how well the observed data fit the 

proposed model.  However, the large number of nodes in this model requires substantial datasets.  

At Michigan State University, we have about 1000 incoming first-year students who express 

interest in engineering and take the pre-engineering curriculum, but they are not formally 

admitted to engineering until their junior year.  These numbers are sufficient for the complexity 

of the hypothesized model. However, we will have to track these students throughout their 

programs before we will have outcome data and can completely test the model.  Since we are just 

completing the first year of the project, we have begun collecting data for this cohort.  By the end 

of next year, we will begin to have seen some attrition and will accept or decline students to 

engineering so we will be able to begin evaluating the model fit at that time.  

When SEM models are fit with data, the software tests the fit of the resulting model using chi-

square tests.  The goal is to have a good fit, that is, not to reject the proposed model, so we look 

for p > .05 (usually substantially higher) to show that the model fits.  If the model fits, then the 

resulting parameter estimates associated with each path in the model indicate how much of the 

variance of that part of the model is accounted for by each of the subcomponents.  For example, 

in the proposed model, there are three factors that directly influence degree completion: GPA, 

persistence and engagement.  Of these, only GPA is an observed variable.  However, GPA is a 

function of all of the other grades in the courses, which, in turn, are a function of academic 

ability and PAL support.  However, academic ability is influenced by persistence and 

engagement which are influenced by PAL support and CF support.  Each of these paths will have 

weights that will tell us the proportional contribution of each of the subcomponents, when 

considered in the context of the whole system. In that way, we will be able to understand the 

relative contributions of the components of EEES and use that data to improve and refine the 

various components.  

Conclusion 

Improving student retention in engineering programs requires a multi-faceted approach that 

addresses academic, social and personal issues that vary across an increasingly heterogeneous 

student population.  The EEES project is taking a four-prong approach to this problem: 1) 

Connector faculty; 2) Peer Assisted Learning (PAL); 3) Course Cross Linkages; and (4) 

Diagnostic (DX) Driven Early Intervention.  These components are inter-related and cannot be 

evaluated in isolation from each other, presenting a challenge for traditional statistical 

techniques.  In this paper we have presented an introduction to Structural Equation Modeling 

(SEM) which can be used to analyze complex, inter-related systems consisting of a mixture of 

observed and latent variables.  SEM makes it possible to propose and test causal models using 

observational data that educational researchers routinely encounter and can be used in a variety 

of settings to gain deeper insight into the factors affecting educational outcomes. 
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